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with high noise levels
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Abstract

We present a newly developed algorithm for the detection of elliptical shapes in images in the presence of high noise levels. The algorithm

combines a modified version of the Hough transform with a genetic algorithm, namely Differential Evolution. Suggestions for a parallel

implementation are given. In our implementation the algorithm is restricted due to the technical problem to be solved, yet it can be easily

generalized to arbitrary ellipse detection.

q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Originally developed for the recognition of simple

shapes in images like e.g. lines, the Hough transform [1]

may be applied to detect any sort of curve which can be

appropriately parameterized. However, the size of the

parameter space grows tremendously with the number of

parameters needed to represent the curve. While a straight

line is described by two parameters, a circle uses three, and

for an ellipse generally five are necessary, yielding a five-

dimensional parameter space. As the detection of circles or

ellipses is a standard problem in computer vision, various

approaches have been developed to reduce time and space

complexity.

The solution we propose, a combination of the Hough

transform with a genetic algorithm, is a new attempt in this

direction. The presented algorithm was designed to detect

ring patterns resulting from experiments with Spontaneous

Non-Colinear Frequency Doubling (SNCFD) in order to

characterize crystals [2]. As shown in Fig. 1, the ideal

SNCFD ring image consists of a nearly circular ellipse with

an additional spot close to the ring center. In real SNCFD

images, portions of the ellipse are usually missing, and most

images contain a high level of noise. A comparable test

image may be represented by Fig. 2 where 40% of the

original pixels are replaced by random noise.

The proposed algorithm for ellipse detection is, however,

not limited to SNCFD rings but of general use in computer

vision: Many pieces of machinery as well as e.g. bottles do

have circular features. In production control systems,

cameras taking images from a conveyor often cannot be

placed perpendicular to these features because tools limit

the field of vision, consequently circles are transformed into

ellipses whose eccentricity is limited by the camera

position. Moreover, the combination of the Hough trans-

form with a genetic optimization algorithm might be of

general interest in various fields of pattern recognition.

2. The technological problem

Using high laser intensities, in crystals with appropriate

point symmetry various nonlinear effects can be produced.

One of these effects is the generation of harmonic waves due

to nonlinearities in the polarization induced by the

fundamental laser beam. These harmonic waves are

amplified when the so-called phase-matching condition is

met: Fundamental and harmonic wave propagate through

the crystal at equal velocities. Usually all light beams

involved are mutually parallel to each other, a colinear

geometry.
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Yet for the generation of the second harmonic wave

(twice the fundamental frequency) the fundamental beam

can also interact with stray light in the crystal producing

second harmonic light in arbitrary directions. In this

noncolinear geometry only for certain combinations of

directions phase matching is achieved. One can show that

the locus of directions, where intense second harmonic light

is produced, is an elliptic cone.

The velocity of light inside a crystal is defined by the

refractive indices of the material. Thus the exact shape of

the phase-matching cone depends very sensitively on the

refractive indices. The indices are influenced in a finger-

print-like way by nearly all other material parameters as for

instance composition, density, or defect concentration. Thus

in turn one can use the measurement of the cone angle to

determine or monitor those other parameters. The technique

is completely non-destructive and contactless, thus well

suited for production monitoring. Yet it is limited to crystal

of certain symmetry classes. Fortunately the applicability of

crystals in nonlinear optics and electrooptics is governed by

similar symmetry restrictions, thus nearly all of the

materials interesting in these fields can be investigated

using this technique.

The application of the method –Spontaneous SNCFD-is

fairly simple: A slightly focused laser beam is directed onto

the sample, the cone of second harmonic light is measured

using a CCD camera. A two-dimensional topographical

inspection is possible when the sample is moved by means

of a suitable translation stage. The only severe problem is

the automatic and quick extraction of the ellipse parameters

from the measured set of video pictures. The problem is

illustrated by Fig. 3 where some typical pictures are shown.

All pictures are characterized by a comparably high noise

level, which is due to stray light in the samples. Due to the

parameters of the crystals under inspection, the eccentricity

of the ellipses is always limited to a certain range.

Furthermore, the crystals under inspection always can be

oriented such that the principal axes of the ellipse are

parallel to fixed, known directions. For simplicity one can

chose a geometry where the axes are parallel to the x- and y-

direction, respectively.

3. Fundamentals of the implementation

To apply the technique as a standard characterization and

monitoring method it was necessary to develop an efficient

algorithm capable of extracting the ellipse parameters from

pictures of that sort. The algorithm was tailored to fit our

application problem albeit can be easily generalized. As we

deal with ellipses at a fixed orientation, we neglect the

respective parameter and use only four parameters for the

description instead of the full set of five.

3.1. Hough transform

The Hough transform (HT) [1] is known to be a highly

robust detection method for objects which can be para-

meterized. It is especially tolerant to pixel noise and shapes

different from the object sought, e.g. the central spot in

SNCFD images. Usual parameters for an ellipse with

horizontal resp. vertical axes are the center position ðx0; y0Þ

and the radii rx and ry :

x 2 x0

rx

� �2

þ
y 2 y0

ry

 !2

¼ 1: ð1Þ

After extracting the edge information from the original

image, the parameters for each edge point ðx; yÞ are

calculated from Eq. 1 and registered as votes in a discrete

parameter space called accumulator. Finally each accumu-

lator entry indicates the likelihood of the corresponding

ellipse parameters, for details including references see [3].

To detect ellipses with an accuracy of one pixel given a

800 £ 600 size image, the parameter space {x0; y0; rx; ry}

must contain 800 £ 600 £ 400 £ 300 < 1010 entries. The

requirements for memory space and computational time

would render the standard HT impractical for ellipse

detection.

Most of the specialized HTs try to use gradient

information in order to improve on memory and speed [4].

In addition, the Randomized HT samples only a random

subset of the original image [5] while novel approaches try

Fig. 1. Test image showing ideal SNCFD-Ring with central spot.

Fig. 2. Test image generated from fig. 1 by substituting 40% of pixels by

random intensity.
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to find the optimal subset [6]. Focusing algorithms can be

used to provide Fast Hough Transforms [7]. Another way to

reduce the time and space complexity is to decompose the

parameter space [8]. A comparison [9], however, has shown

that HTs utilizing gradient information are only suited for

images containing less that 10% of speckle noise. When

applied to our test images, these special HTs as well as

similar methods based on local features failed because the

gradient information is degenerated by noise. Even the

initial step of edge extraction poses a problem with our

images: Common examples of HT application ideally use

high contrast disk images from which circular edges result.

Filtering a blurred ring image with usual edge operators will

at best yield two concentric circles. A Laplacian would

generate a single ellipse for each optimal ring but is also

much more sensitive to noise because of the second

derivative. For the algorithm presented in the following

sections we obtained the best results when applying the HT

to the original, unfiltered image, weighting the votes into the

Hough accumulator by the intensity of the image pixel.

3.2. Elliptic circle parameterization

The parameter space can be reduced in size by

acknowledging the limited eccentricity of the ellipses

under investigation. In a new parameter space {x0; y0; r :¼

rx; e :¼ ry=rx} Eq. 1 becomes:

ðx 2 x0Þ
2 þ 1=e2ðy 2 y0Þ

2 ¼ r2
: ð2Þ

For SNCFD-rings a suitable range would be e ¼ 0.92…1.08

with 20 discrete steps. To further shorten the accumulator,

only a two-dimensional HT into {r; e} is calculated,

requiring merely 400 £ 20 entries.

As depicted in Fig. 4, the accumulators for both ideal and

noisy ring images exhibit a well defined maximum

corresponding to the parameters r and e sought, as long as

the center coordinates ðx0; y0Þ are chosen correctly. For

positions ðx0; y0Þ increasingly different from the ring center,

the accumulator peak flattens up to a degree where it cannot

be found.

3.3. Determination of ellipse center

If a peak is found in the accumulator, its height divided

by its width is defined as the peak value v, otherwise v is set

to 0. As shown in Fig. 5, this value v has a well defined

maximum where ðx0; y0Þ matches the ellipse center.

Conventional methods for multidimensional maximization

of vðx0; y0Þ like the Simplex search [10,10.4] will none-

theless often fail to find the optimal ðx0; y0Þ because of local

side maxima. They might also stop without any valid

solution as they depend on gradients in vðx0; y0Þ: Many

positions, though, yield an accumulator without an obser-

vable peak. While a complete test of all possible ðx0; y0Þ will

finally detect the correct ring center, the computational

effort would be too high.

3.4. Differential evolution

Genetic algorithms (GA) provide an elegant way for

optimizing vðx0; y0Þ as they combine means of directed

search with random modifications of ðx0; y0Þ: Consequently

they do not stop in regions of v with vanishing gradient.

Starting with an initial set (population) of coordinates, GAs

generate new trial coordinates via a combination of

calculations named mutation and crossover. Finally selec-

tion decides which trial coordinates will replace members of

the previous population in order to form a new generation.

Differential Evolution (DE) [11] is a powerful yet

exceptionally simple to implement GA.

Usually evolutionary strategies mutate vectors by simply

adding zero-mean Gaussian noise to them. To be efficient,

this noise distribution has to be adapted dynamically to the

population distribution itself. This can be a complicated

process, especially when the parameters behave differently.

We used a newer, more convenient approach, mutation with

Fig. 3. Real images of SNCFD characterization measurements. Most images show a broadened elliptic ring, high noise levels, and an intense central spot.
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itself is used as source of appropriately scaled perturbations.

Every pair of vectors, ðza; zbÞ; defines a vector differential

za 2 zb: When both vectors are chosen randomly, their

weighted difference can be used in place of Gaussian noise

to perform the mutation step.

For the task of optimizing vðx0; y0Þ; an initial population

of test centers ðxi; yiÞ; i ¼ 1…N; is chosen, the HTs are

calculated and the corresponding values vðxi; yiÞ are

determined. The behavior of DE is fully controlled by the

population size N, usually set to 10, the scaling factor for

mutation F ¼ 0…1; and the crossover rate CR ¼ 0…1: New

generations are calculated by genetically evolving each

coordinate according to the following loop:

for i ¼ 1 to N do

repeat

choose random integers 1 ,¼ {a; b; c} ,¼ N:

until i; a; b; c different.

choose random integer 1 ,¼ k ,¼ 2:

choose random float 0 ,¼ r ,¼ 1:

if k ¼ 1

xt ¼ xi:

if r , CR

yt ¼ yc þ F·ðya 2 ybÞ:

else

yt ¼ yi:

else

yt ¼ yi:

if r , CR

xt ¼ xc þ F·ðxa 2 xbÞ:

else

xt ¼ xi:

calculate vðxt; ytÞ; i.e. perform HT into {r; e} for center

ðxt; ytÞ and evaluate accumulator.

if vðxt; ytÞ . vðxi; yiÞ

replace ðxi; yiÞ by ðxt; ytÞ:

This evolution loop is repeated until all coordinates are

nominally equivalent, e.g. all inter-coordinate distances fall

below one pixel. We tried several values for the scaling

factor F and the crossover rate CR and found good,

dependable operation—for our problem—setting both to

0.2. Higher values do accelerate the algorithm by increasing

the mutational change (F ) or diversity (CR) but might also

cause it to miss the best solution.

3.5. Parallel computation of Hough Transform

Each iteration of the DE main loop as described in

section 3.4 requires N Hough Transforms. While the test

center coordinates ðxt; ytÞ for each HT are originally float

numbers, integer pixel coordinates are a more sensible

choice for pixel images. To avoid—after rounding ðxt; ytÞ —

recalculation of equivalent HTs, a cache for vðxt; ytÞ is used.

Because of the inherent parallelism of the DE main loop, all

N iterations needed to calculate a new generation can be

performed in parallel.

Fig. 4. {r,e}-subspace of Hough accumulator for Fig. 1 (left) and Fig. 2 (right) test images, ðx0; y0Þ set to match correct ellipse center.

Fig. 5. Value v of peak in Hough accumulator for Fig. 2 test image for

various center coordinates ðx0; y0Þ:
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HTs. Therefore in our implementation up to N Hough

servers are launched on different CPUs. The main loop was

modified to calculate all the N test centers ðxt; ytÞ first. If a

coordinate has already been used, the associated peak value

vðxt; ytÞ is taken from the cache, otherwise the HT is

enqueued to be performed by the next idle Hough server.

Because of the high rate of cache hits when the DE is

converging, experiments have shown that the number of

Hough servers can be reduced to about N=3 without

increasing overall search time.

4. Results

4.1. Real images

To illustrate the technique, the evaluation of the real

images shown in Fig. 3 is demonstrated. We use low

resolution pictures (183 £ 141 pixels) for simplification.

Fig. 6 shows the height of the maximum values of the

{r,e}-subspaces of the Hough accumulators as a function

of the ellipse center ðx0; y0Þ for each of the real images.

The coordinate range for the ellipse center is restricted to

80 # x0 # 120 and 65 # y0 # 90; respectively. In each

case a maximum value (darkest spot) of these {r; e}

maxima is clearly detectable, indicating the coordinates

of the optimum ellipse center. Yet the distribution of the

maxima gets considerably flattened out when noise and

background intensity increase in the corresponding

original pictures.

The distributions in the {r,e}-subspaces of the Hough

accumulators for the optimized ellipse centers are shown in

Fig. 7 (10 # r # 70; 0:8 # e # 1:2:) As can be seen, the

maxima (dark regions) are less expressed yet can be well

discriminated. Again, corresponding to the broadening of

the ellipses and to the increasing background intensity in the

Fig. 7. {r,e}-subspaces of the Hough accumulators for optimized center coordinates x0; y0: r(10…70) from left to right, e(0.8…1.2) from bottom to top in each

of the graphs. For better visibility of the maxima, in the lower three graphs the gray scaling is expanded by a factor of 10, all values less than 90% of the

maximum thus are suppressed.

Fig. 6. Peak values in the {r,e}-subspaces of the Hough accumulators as a function of the ellipse center coordinates ðx0; y0Þ for the six real images of Fig. 3.

x0(80…120) from left to right, y0(65…90) from top to bottom in each of the graphs.
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accordingly.

Fig. 8 shows the final results, the ellipses found by the

described algorithm. They are indicated as solid black lines

superimposed to the original pictures.

4.2. Bias problems

In Figs. 6 and 7, besides the main maxima also less

expressed minor maxima can be detected. These probably

could cause bias problems when using gradient algorithms

for maximum detection. Depending on the starting point,

such an algorithm could get stuck in one of the minor

maxima. For the DE algorithm used here we did not

experience such a behavior when choosing the relevant

parameters (scaling factor F and crossover rate CR as

described in section 3.4 appropriate for a dependable

operation.

4.3. Sample application

Using the described algorithm for ellipse detection, the

technique is now readily applicable for the characterization

of crystals. An example is shown in Fig. 9. A lithium niobate

crystal is topographically inspected to test homogeneity and

composition. SNCFD rings are measured in a two-dimen-

sional scan all over the test crystal. The ellipse parameters

are automatically extracted using the described evaluation

scheme; from the parameters, the crystal composition is

derived. As can be seen, there is a slight compositional

variance in the growth direction of the crystal. To our

knowledge no other technique available in this field is

capable to detect such small variations [12].

The calculation time needed for the extraction of the

ellipse parameters for one image was typically 100 s using

four Pentium 133 in parallel. In comparison, a full Hough

transform for the same problem lasted about 1 h.

Fig. 9. Result of a typical characterization measurement: Two-dimensional composition topography of a lithium niobate crystal. The achieved composition

resolution is in the order of 0.01%, a value not reached by any other technique.

Fig. 8. Ellipses detected by the algorithm. The black lines indicating the ellipses are superimposed to the images of Fig. 3.
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5. Conclusion

A specialized Hough transform has been presented which

is optimized for detecting ellipses with limited eccentricity

like nearly circular rings even in the presence of high noise

levels. As common simplifications of the standard HT like

utilizing edge and gradient information were not successful,

we fell back on transforming the full original image. The

Hough accumulator was reduced in size by optimizing the

remaining parameters with DE. A parallel implementation

of the genetic algorithm was used to reduce the overall

detection time.
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